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The transport of dynamically neutral tracer in flow through a random network of tubes with per-
colation disorder is investigated. For each bond of the system, the tracer motion is governed by a
convection-diffusion equation, with the drift term accounting for the local bond velocity. This
represents an extension of random walks in disordered media to the important case of finite macro-
scopic flow rates. A calculational technique is developed which provides, for a given configuration
of the disorder, the exact moments of the distribution of transit times for the tracer to traverse the
system. This approach is implemented numerically for L X L random networks at the bond percola-
tion threshold. When the total fluid flux Q vanishes, the kth moment of the transit time is found to
scale with sample size as L***?" where 8=t — 3/v is the exponent describing the scale dependence
of the diffusion coefficient of the *‘ant in the labyrinth,” D,,,. By contrast, when Q becomes large,
the kth moment is found to scale as Q ~'L 2~ #/v+k =112+8  Thig behavior of the moments at large Q
is explained on the basis of a simple heuristic argument and from a more detailed analytical calcula-
tion. Furthermore, a scaling ansatz for the transit-time moments is postulated which describes our
data for all flow rates. The large-Q behavior of the moments leads to a longitudinal dispersion
coefficient which scales as U’L?/D,,,, where U is the average flow velocity, in agreement with a
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prediction of de Gennes.

1. INTRODUCTION

A fundamental question in flow through porous media
is the nature of the transport of dynamically neutral
tracer when it is injected into a fluid flowing in a porous
medium.! =3 Of particular experimental relevance is the
average time needed for the tracer to traverse a given dis-
tance, and also the rate of spread of a localized pulse of
tracer when carried in a steady-state flow. The former
process provides information about the permeability of
the medium, while the latter process, known as hydro-
dynamic dispersion, yields more detailed structural infor-
mation. For a relatively homogeneous system, a localized
tracer pulse asymptotically evolves to a Gaussian distri-
bution whose variance grows linearly in time, multiplied
by a proportionality constant that is known as the longi-
tudinal dispersion coefficient, D”. Most previous work on
transport in random media has primarily considered the
two properties discussed above, which involve only the
first two moments of the distribution of times for the
tracer to traverse a given length in the system. (See, e.g.,
Refs. 4 and 5, and for a notable exception see Ref. 6.)

More generally, one may consider the full distribution
of transit times and study scaling properties of arbitrary
moments, in order to obtain a better understanding of
flow in porous media. In this paper, we study the proper-
ties of this distribution in the case of flow occurring in a
poorly connected porous medium. We focus our atten-

37

tion on percolation disorder,” in which the medium con-
sists of a lattice network of identical tubes which are ei-
ther present (with probability p) or absent (with probabili-
ty 1—p). This type of disorder should be of relevance for
the situation where dispersion is taking place in one of
two immiscible fluids present in a porous medium, since
it is often the case that the configurations adopted by the
two fluids are determined by percolation mechanisms.®~!°
In our network model, the flow in each tube is deter-
mined by the local pressure drop across it upon the impo-
sition of a given value of the external pressure drop
across the system. This flow is essentially the same as the
current flow in each bond for a corresponding random
resistor network with an appropriately chosen value of
the external potential drop.

In the presence of this steady-state background flow,
we have calculated the detailed microscopic rules which
govern the motion of the tracer at the level of single tubes
and tube junctions. These rules follow from a “perfect
mixing” assumption that we discuss in Sec. III, which
permits a factorization of the microscopic problem into a
set of tractable single-bond calculations. Furthermore,
we show how to use these microscopic rules in order to
construct the complete distribution of transit times for
tracer to traverse the system under investigation. This
gives rise to a calculated approach which yields, in prin-
ciple, exact values for moments of the transit-time distri-
bution for tracer to pass through a given configuration of
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the network. In some respects, the present approach is
complementary to the previously developed ‘“‘probability
propagation” algorithm for describing tracer motion on
random networks.!"?

The aforementioned microscopic rules for the tracer
motion are essentially those of a continuum random
walker moving in the presence of an inhomogeneous bias
whose magnitude is determined by the local flow velocity.
This represents the appropriate generalization of random
walks in disordered media to account for a finite macro-
scopic flow in a physically meaningful way. Thus we be-
lieve that our general formalism provides an important
step in the realistic understanding of flow through porous
media.

With our calculational method, we have first studied
analytically a number of simple illustrative examples
from which we can develop an intuition for the form of
the transit-time distribution in the interesting case of a
random medium with percolation disorder. We have
then implemented our approach numerically for percolat-
ing networks at the percolation threshold on L XL
square lattices. Our results suggest that at zero flow ve-
locity, the transit-time moments are all characterized by
a single time scale, i.e., (tky ~(t )l", where (t¥) is the
kth moment of the transit time. However, at high flow
rates, we find that two characteristic time scales are need-
ed to account for the behavior of the moments. This is
somewhat reminiscent of the infinity of time scales need-
ed to account for the transit-time moments on a hierarch-
ical structure in the purely convective limit.!> We are
therefore led to postulate a scaling form for the transit-
time distribution which is based on a two-time-scale hy-
pothesis. This scaling ansatz is found to account for our
data as a function of the flow rate and the system size
with a high degree of accuracy.

From our data, we also investigate the behavior of the
longitudinal dispersion coefficient D as a function of sys-
tem size and of the flow rate. At low values of the flow
rate, D is velocity independent and is governed by D,,,,
the diffusion coefficient of the “ant in the labyrinth.”'
On the other hand, at high flow rate, D, is found to scale
as U’L*/D,,, where U is the average fluid velocity.
This form closely parallels the classical Taylor formula
for dispersion in a long pipe,'>'® and, in particular,
agrees with a prediction of de Gennes!” for dispersion on
percolation clusters.

This paper is organized as follows. In Sec. II we
present a general discussion of the basic physical mecha-
nisms underlying dispersion in random networks, and
then consider dispersion in a homogeneous system on the
basis of the solution to the macroscopic convection-
diffusion equation. In Sec. III we describe our basic for-
malism for calculating the transit-time distribution for an
arbitrary random network of tubes. In Sec. IV we
present a physical argument to account for the behavior
of the transit-time moments on a simple network whose
behavior appears to typify that found on percolation clus-
ters. In particular, the special features associated with
the dead ends are emphasized. We then use the formal-
ism of Sec. III to calculate the transit-time moments
analytically for a linear chain with any number of dead
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ends attached to the midpoint. From these examples, the
qualitative nature of the transit-time moments for a per-
colating network may be inferred. In Sec. V we present
our numerical simulations and analysis of dispersion on
percolating square-lattice networks. A number of results
related to the solution of the network convection-
diffusion equations, as well as various calculational de-
tails, are given in Appendixes A-D.

II. GENERAL DESCRIPTION OF DISPERSION

The nature of hydrodynamic dispersion in porous
media is controlled by the competition between convec-
tion and molecular diffusion. This competition is embo-
died by the Péclet number

Ul

P=— (1
P D )

m

where U is the average fluid velocity, / is a characteristic
internal length scale of the medium, and D,, is the molec-
ular diffusion coefficient. One may think of 7 as the ratio
of the molecular diffusion time /%/D,, to the convection
time / /U over a distance /. For small values of the Péclet
number, the transport is dominated by molecular
diffusion, so that as 7—0 the dispersion coefficient D, is
simply proportional to D,,. More precisely,
D o

S
Dm ¢UO

where ¢ is the porosity (more generally the volume frac-
tion of the porous material occupied by the fluid), o is
the electrical conductivity of the pore fluid, and o is the
effective conductivity of the porous medium when occu-
pied by the fluid. While this result seems to be well
known, we are unable to cite a proof in the literature, and
for completeness one is presented in Appendix A.

As the Péclet number increases, the behavior of the
dispersion coefficient depends crucially on the connected-
ness of the system. For a well-connected pore space, both
the transport and the mixing of tracer between various
streamlines becomes dominated by convection, and D,
becomes linear in the flow rate (apart from logarithmic
corrections; see below). A simple argument in the spirit
of a mean-field approximation can be developed to ac-
count for this behavior of the dispersion coefficient. Con-
sider a well-connected network in which the typical spac-
ing between junctions is / (Fig. 1). At the junctions mix-
ing occurs, in which the fluid velocity is changed, both in
direction and in magnitude. As a rough approximation
to this situation, we replace the random network by a
bundle of noninteracting stream tubes which all meet at
perfect mixing chambers interspersed a distance !/ apart.
With respect to the average flow velocity U the tracer in
a given stream tube may be moving downstream either
faster or slower than U. Thus the dispersion process may
be viewed as an effective random walk with a characteris-
tic step length /, and a characteristic time between steps
given by 7=1//U. Therefore, with respect to the average
flow, the spread of tracer will be governed by a dispersion
coefficient that scales simply as /?/7~ Ul, and this leads
to

as P—0, (2)
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FIG. 1. Schematic picture of a random medium, and its
idealization as a bundle of independent stream tubes with mix-
ing occurring only at perfect mixing chambers.

—L P (3)

In a more rigorous discussion of this random-walk
model, it is necessary to perform an integration over the
complete distribution of bond transit times in the porous
medium in order to compute typical time scales.!®!® If
the medium contains regions of very slow moving fluid,
then one finds that () remains well defined, but that
(7?) diverges unless a large-time cutoff is introduced in
the bond transit time to render the integral finite. Such a
cutoff on the transit time is imposed physically by molec-
ular diffusion, and it ultimately leads to the following log-

arithmic correction to the dispersion coefficient:!'%2°
D pmp ()
L PP
D

m

A very different situation occurs when the mixing pro-
cess is dominated by molecular diffusion, as might occur
when there are substantial regions of the pore space
where the flow essentially vanishes, or if the tracer can
diffuse in and out of the solid grains. Because of such
“stagnation” effects, one finds that D grows quadratical-
ly with the flow rate,

——~P?. (5)

This behavior can also be understood in simple terms by
a random-walk argument. As a rough approximation for
distinguishing the flowing and stagnant regions, consider
a one-dimensional chain, to which are attached dead ends

)

FIG. 2. An idealization of a percolation cluster as a quasi-
one-dimensional chain, to which dead ends of length £ are at-
tached.

of a typical length £ (Fig. 2). Tracer is convected
through the backbone, while tracer diffuses on the dead
ends with diffusion coefficient D, (which could depend
on .L as well as the physical properties of the dead end).
Thus with respect to the average flow velocity, the tracer
in the dead ends is moving slower than the average, while
the tracer in the backbone is moving faster than the aver-
age. Once again, the dispersion process may be viewed as
an effective random walk with respect to the average
flow. The characteristic time 7 between successive steps
is the typical time for tracer to explore a dead end, and
this scales as £2/D,. Furthermore, the step length / of
the random walk is simply Ur, so that the dispersion
coefficient scales as

D, ~1?/T~UL*/D . (6)

This form for the dispersion coefficient resembles the re-
sult obtained by Taylor! and Aris'® for the enhancement
of the molecular diffusivity due to Poiseuille flow in a
pipe.?!

If we now consider a flow taking place in a percolating
network near the threshold, we have a situation some-
what analogous to flow in a pipe, as the connectivity of
the random network is rather tenuous, leading to large
(in fact, dominant) dead-end regions. For this case, de
Gennes'” has made the prediction

22
p ~ L& ™)

ant

where & is the percolation correlation length and D, is
the microscopic diffusion coefficient of the “ant in the la-
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byrinth.”'* This result is of the same form as that given
in (6), except for the identification of .L with the correla-
tion length and D, by D,,, both intuitively plausible as-
sumptions. One of the goals of this paper is to investigate
the validity of Eq. (7).

Having developed an intuition for the microscopic
basis of dispersion, we now turn to a macroscopic
description of the process. The conventional approach'~?
is to view a randomly porous medium as an effective
homogeneous system in which the dispersion is described
by the convection-diffusion equation (CDE)

aC ., dC 3’C 2
o +U o —-D, a2 —D ViC=0, (8)
where C is the tracer concentration, U is the average flow
velocity, assumed to be in the x direction, and D and D,
are the longitudinal and transverse dispersion coefficients.
The validity of (8) depends essentially on the size L of the
system being large enough for the central limit theorem
to apply. If we consider a system which is homogeneous
only above a scale /, then we clearly require

L
—I-‘>>1 . 9)

However, we also require that the transit time across the
entire sample be much greater than any “microscopic”
time 7 in the system, i.e.,

%»7, (10)

so that the tracer is likely to fully sample the microscopic
structure. If the system is purely convective, then 7 will
be just / /U, and (10) will reduce to (9). However, if there
are dead-end regions (for example, of linear extent .£)
then (10) must also be satisfied for diffusive times 7 of or-
der L2/D,, where D is an effective diffusion coefficient
on the scale .£L. Thus we require

L UL
— —_ 11
7 >> D, (11)

for an effective macroscopic description to apply.

In order to interpret the results of our numerical simu-
lations, we require the solution of the CDE (8) with
boundary conditions appropriate for a macroscopically
one-dimensional flow on a finite-length system. The
transverse variation will play no role in the subsequent
discussion. We consider an initially empty system, and
boundary conditions of a unit source of flux at the inlet
end and an absorbing boundary at the outlet end of the
system. For a system of length L, this leads to

Cix,t=0)=0,
J(x=0,t)=5(t) , (12)
Clx=L,t)=0,

where J =UC —D 0C /0x is the flux. (Note the two con-
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tributions to the flux arising from convection and disper-
sion, respectively.) The one-dimensional CDE is most
conveniently solved by introducing the Laplace trans-
form

C(x,s)= fow C(x,t)e~%dt , (13)

which yields for (8)

y3Clxs) o &€

3x - ”‘a—x‘z-zo. (14)

sC(x,s)+

The solution to (14) is of the form
C(x,5)= Ae™ 4 BeP* | (15)

where a,B=[U=+( U2+4D"s)”2]/(2D“) and the con-
stants A and B are determined from the boundary condi-
tions to be

A:[D“(B-ae‘““ﬁm)]_‘ ,

(16)
B=[D (a—Be'a7FL)]-1 .

Finally, we observe that the first-passage probability den-
sity P(t) is just the flux at the outlet, a correspondence
which arises from the imposed initial conditions of a unit
flux input and the presence of an absorbing boundary at
the outlet. Thus the Laplace transform of P(¢) is

MM

P(s)=J(L,s)=
(s)=J(L,s) M sinhM +M_ coshM, ’ an
where
UL
= 2D, (18)
is the macroscopic Péclet number, and where
M, =(M?*+sL*/D )" . (19)

From the definition of Laplace transform, P(s) can be
regarded as the generating function of the transit-time
moments, which can be extracted by a series expansion of
P(s) in powers of s. We thereby obtain

L1 .

~21’W)
2M 4M?

2
) (20)

L
<t>=—5'

L2

DH

1 1

(1*)= —
aM?  8M*

[2—(6M +1)e M

—e M| 21

and so on. The limiting forms of the moments are in-
structive: For the first moment, we find

LZ
M—-0
2D, as (22)
t)—
—U—-——(;; as M — «, (23)

while for the second moment, the asymptotic forms are
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2
2
—1% %— as M —0 (24)
Il
(tz)“"* 2 2
2D
%_—U—)+0(e—M) as Mo, (25

and the limiting behavior for an arbitrary moment has
the form

X as M —0 (26)

<tk>——>
4+ as M-— o, (27)

L
U

where the x; are constants. These results are in accord
with simple intuition: At small Péclet numbers, the
transit-time moments are all governed by the diffusion
time LZ/D”, while at high Péclet numbers the moments
are governed by the convection time L /U, with correc-
tion terms being both of power-law and exponential order
in M. For future use, we record the relation between D,
and the transit-time variance 0>=(t?) —(¢)? in the two
limits of small and large Péclet number:

L2
— as M -0 (28)
b \/60,
= 3
ZEL—of as M— co. (29)

In principle, formulas (28) and (29) apply only if the
macroscopic CDE provides a good description of the be-
havior of the system on the length scale L. Necessary
conditions for this to be true were given above in (9), (10),
and (11). However, the high Péclet-number result (29)
can hold under the more general assumption that the sys-
tem size L is sufficiently large that if we consider a still
larger system made up of subsystems of size L, then the
different subsystems are “independent,” in the sense that
tracer will not diffuse against the flow on a length scale L.
This requires that the convection time L /U across a
length L be much less than the diffusion time L 2/DL, i.e.,

UL

D, >1. (30)
If this is true, the average time (¢ ) for a system of length
NL will be just N times that for a system of length L, and
similarly for the variance o2,

g NL)=NoXL) . 31

From this, we see that if N is large enough for (29) to
hold for a system of size NL, then the correct macroscop-
ic value of D will be obtained from
vl , U’ ,
D”—ZNLU'(NL)— oL o;(L), (32)
i.e., D| may be obtained by simulations or experiments on
a sample of size L, despite the fact that the macroscopic
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CDE may not be a valid description of the system on that
scale. For example, we see that at fixed system size L, the
condition (30), required for (31) to be valid, is always
satisfied as U — «, whereas condition (11), required for
the validity of the CDE, is always violated.

Even in cases where the CDE is not strictly applicable,
one can obtain useful order-of-magnitude information
from equations such as (28) and (29). Consider, for exam-
ple, diffusion on a percolation cluster, where a simple
one-equation macroscopic equation may not be expected
to apply. One might, however, make the weaker assump-
tion that the scaling behavior is entirely controlled by
D,., in which case dimensional analysis implies that
(t*)~[L?*/D,,(L)]*. The CDE gives this same depen-
dence, but with a specific value of the L-independent pre-
factor. As we shall show in Sec. V C, the variation with
L is indeed as stated, but the prefactor predicted by the
CDE is incorrect. More generally, when one examines
the transport coefficients of systems as a function of size,
there is a strong systematic size variation up to the corre-
lation length, beyond which there is a residual order-of-1
variation until the macroscopic value sets in. We antici-
pate that one may match a microscopic calculation at the
correlation length to the macroscopic equation, to obtain
at least the rough size variation of the macroscopic
coefficients, if not their precise value.

A common practical remedy for the failure of the
CDE, for example, in dispersion in flow in hydrocarbon
reservoirs,”? is to divide the tracer into “flowing” and
“stagnant” components. The flowing component is as-
sumed to satisfy the CDE with a capacitancelike coupling
to the stagnant tracer. This method is intended to treat
situations where the sample is somewhat too short for
proper sampling of the pore space to occur, cf. Eq. (11),
rather than percolation disorder, and we do not pursue it
further here.

III. NETWORK EQUATIONS

The one-dimensional CDE, presented in Sec. II, pro-
vides the exact solution of dispersion for a homogeneous
one-dimensional system (or equivalently for a single tube)
when transverse degrees of freedom are neglected. We
shall now extend this calculational approach to treat a
random network of such tubes. We describe the tracer
concentration in each tube by a one-dimensional CDE in-
volving the molecular diffusivity, thereby assuming that
there is perfect transverse mixing. This would be exact in
the limit of vanishing tube radius. (To account for a
finite tube radius, we may still employ the one-
dimensional CDE, but now with the Taylor dispersivity
instead of the molecular diffusivity; the formalism of this
section would then be unchanged.) We will also assume
that there is complete mixing of the tracer at the nodes of
the network, so that each tube ‘“‘sees” the rest of the sys-
tem only through the tracer concentration at its two
ends. By the description of each tube in terms of a CDE,
the competition between convection and molecular
diffusion is treated in a physically meaningful way ac-
cording to the degree of local bias in each bond. Owing
to the continuum nature of our approach, the effects of
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longitudinal dispersion in the links are treated exactly,
but the method does rely on the perfect mixing assump-
tions just stated, so that it becomes exact only in the limit
of very narrow tubes.

For well-connected media, the model is perhaps not
completely realistic (especially at high Péclet numbers),
because regions of slowly moving fluid near the pore
walls, and the lack of complete mixing at the nodes are
important effects—real porous media do not entirely
resemble a network of narrow tubes. However, for poor-
ly connected media, a tube network with percolation dis-
order offers a reasonable description of a random medium
because the dominant transport mechanisms are convec-
tion and diffusion over distance scales of order the corre-
lation length, which is much larger than the length of a
single tube. Furthermore, at a percolation threshold, one
may anticipate that the results will be universal with
respect to the details of the microscopic geometry.

In our numerical simulation method, we consider a lat-
tice network of nodes i connected by links ij of length /;;
and cross-sectional area S;;. For simplicity, these quanti-
ties will be taken to be identical for each link, but the
method could easily be extended to the more general
case. The nodes at one end of the network are all con-
nected to an inlet node I, and those at the other end to an
outlet node O; see Fig. 3. We first compute the back-
ground flow field by applying a fixed pressure drop be-
tween the inlet and outlet nodes. If there is Poiseuille
flow in the tubes, then the fluid flow problem is iso-
morphic to current flow in a random resistor network for
which the conductance of the link /j is given by

S2
g~ 7L . (33)
U
The analogy with the resistor network also implies the
correspondences

node voltages<>node pressures ,
link currents<»link fluxes .

By a simple rescaling of the pressures at each node, the
average flow velocity U may be set to any desired value.
In each link there will then be a corresponding value of
the local velocity, and the tracer motion in the links is
taken to be governed by a one-dimensional CDE, with
the drift term given by this local velocity.

This description of the tracer motion should be con-
trasted with that of a discrete (in time and space) biased

mean flow

outlet

inlet
\

FIG. 3. Typical network configuration used for computer
simulations.
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random-walk model on a percolating cluster.”>~2° One
important point of departure is that in typical biased
random-walk descriptions, the mean free path coincides
with the tube length. By contrast, our formulation of a
single tube in terms of a CDE means that we are also
considering a biased random walk in each tube, but one
in which the ratio of the mean free path to the tube
length vanishes. This should be more appropriate for
describing tracer motion in a fluid, where the mean free
path is negligible compared to the scale of the pores. In
the discrete model, the asymptotic behavior of a single
tube can be recovered with some calculational labor by a
generating-function solution, discussed in great detail by
Goldhirsch, Gefen, and co-workers.?*

A second point of contrast with discrete random-walk
models is that in our description there is simple unbiased
diffusion (in the continuum limit) in the dead ends, while
biased diffusion occurs on the backbone, with the bias in
each tube determined by the solution of the global flow
equations. However, in biased random-walk models, it is
typically assumed that there is a uniform bias every-
where, including the dead ends.?® This leads to dead-end
residence times which grow exponentially with the length
[ of the dead end, rather than growing as /? for unbiased
diffusion. Consequently, trapping in the dead ends plays
a crucial role in determining the motion of a random
walker. This might be appropriate for an extremely di-
lute system where hydrodynamics is not relevant, but not
for typical fluids.

As in the single-tube problem, the fundamental quanti-
ty describing transport in the network is the first passage
probability density P(z) for the tracer to arrive at the
outlet node, given that there is a d-function injection of
flux at the inlet node. This first-passage problem may be
solved in terms of the set of local tracer concentrations,
{c;(2)}, at the nodes of the network. To solve for the
{c;(1)}, first consider the equation of motion for a single
link ij in which the tracer concentration within the link,
¢;;(x,1), satisfies

2
—-D,,—5 =0, (34)

where u =u;; is the local flow velocity in the link (with
the sign convention that flow from i to j is considered
positive) and c=cy. If, initially, ¢;;(x,t=0)=0 for all
links, then in the Laplace transform domain Eq. (34) be-
comes
oc d%e
sc+u—-—D, —=0. 5
+ ax " ax? (35)
The boundary conditions appropriate for the system are
determined by the continuity of the various link tracer
concentrations at a junction between several links. That
is,

¢;=¢ atx=0,
(36)

¢;=¢c; at x=1,-j .
As in Sec. II, the solution to (35) is of the form

e(x,5)= Ae™+ BeP* | (37)
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where

ut(u*4+4D,s)"? (38)
a,f= D, ,

and for the boundary conditions specified,

A_zj—a,.eﬁ’
eal_eBI ’
; (39
3 cie™—¢;
Tl _ Bl

The Laplace transform of the flux leaving node i along
link ij is then given by

Jij=Sj

oc;;
i
= S

ij— m Ax

u (40)

iy

x =0

Using Egs. (37)-(39), we may express this flux in terms of

the concentrations ¢; and ¢; at the two ends. Thus writ-

ing J; =G;f ¢, —G;; ¢;, we find

ij v
G (s)=D,,S;;(m +mcothm )/l , 41)
G; (s)=D,S;(me~"/sinhm,)/1 , (42)

where m =ul /2D,, and m;=(m?*+sl*/D,)"/?. Assum-
ing that the nodes have negligible volume, then the tracer
cannot accumulate at these points, so that the ¢; satisfy

0=3J,=3(G7¢,—G;¢c;) (43)
J j
for the interior nodes, and
=37,
J
J

for the inlet node (corresponding to a 8-function input of
flux). Due to the absorbing boundary condition at the
outlet node, the Laplace transform of the first-passage
probability density P(¢) is simply given by the flux exiting
via the outlet node

Ps)=— 3 To;= 3 Ggie, - (45)
i J

For any given value of s the Egs. (43) and (44) and the
associated boundary conditions are the analogues of the
Kirchhoff equations 3 ; g;;(v; —v;)=0, for the potentials
v; in an electrical network. The primary difference be-
tween the two sets of network equations is that in the
tracer problem, the effective link conductances are direc-
tion dependent. In other words, when the network equa-
tions are written in the matrix form

A(s)e(s)=b , (46)

then the matrix A(s) is not symmetric. Note that, be-
cause we consider a 8-function input of flux, the right-
hand side, b, of (46) is independent of s.

The simultaneous equations (46) may be solved in a
number of ways.!""2"-2% In Ref. 11, they were solved by a
“probability propagation” algorithm which was motivat-
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ed by a physical picture in which individual packets of
first-passage probability representing summations over all
possible paths of tracer particles are propagated through
the system. In fact, it is possible to show that the net-
work first-passage probability (45) is obtained exactly, up
to geometric convergence, from the probability propaga-
tion algorithm. (This relation is elucidated in Appendix
B.) For a well-connected network with little backflow or
stagnation effects, probability propagation leads to a rela-
tively efficient method as the computation time is propor-
tional to the system volume. It should also be em-
phasized that probability propagation represents an exact
summation over all possible tracer particle paths through
the network. Consequently, probability propagation
should supersede earlier computational approaches,
based on the passage of individual particles through the
network.*> In fact, the latter approach must lead to in-
correct results in a finite simulation, as the low-
probability paths, which can dominate the higher
transit-time moments, will not be sufficiently well sam-
pled. (To be fair, the work of Sahimi et al.**> concerns
the purely convective limit where probability propagation
is quite equivalent to particle tracking; further discussion
of this question is given by Sahimi and Imdakm.?®)

For a poorly connected medium, on the other hand,
backflow and stagnation cause the propagation of first-
passage probability to become relatively inefficient. As
an alternative, Roux et al.?’ solved the network equa-
tions by a transform matrix method, in close analogy
with a similer method used for electrical networks. Here,
as in Ref. 28, we will simply solve the equations, directly,
using a standard inversion routine for nonsymmetric ma-
trices. There are two variations of this approach which
we have used to obtain complementary information.
First, we may simply solve Eq. (46) at selected values of
the Laplace transform variable s, compute P(s) from (45),
and then use a numerical inversion to convert to the time
domain and finally obtain P(¢). However, if we are in-
terested only in the transit-time moments

M, = fo” dt P(1)" 47)
then we may expand A4 (s) and &(s) in powers of s,

A(S)=A(0)+A(I)S+A(2)SZ"“"' , (48)

E(S)=§<O)+§(1)S+§(2)SZ+"' , (49)

so that by equating powers of s in (46) we obtain

A(O)E(O)Zl_’ ,
A(O)E(”='—_A..(“§(O) , (50)

Az D= _ g g_ gm0

etc. The moments are then given by

n
M"=(_1)nn!z EOGO»j(m)E"(,_n—m) , (51)
jom=
where ¥ ; denotes a sum over the nodes connected to the
outlet, and the Go"j(’") are obtained by expanding Gg;(s)

in powers of s,
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GO}(S)———GO’J»‘O)+G0’J~“)S+Go‘j‘2’52+ N (52)

We see that in order to obtain the moments, it is only
necessary to invert the matrix A‘?.

IV. HIGH -PECLET-NUMBER LIMIT
FOR SMALL NETWORKS

Many of the results we shall obtain for the transport of
tracer on percolating networks in the limit of Péclet num-
ber can be anticipated on the basis of analytical results
for a small network containing a dead end. This particu-
lar example appears to capture the essential nature of the
competition between convection and diffusion in the
high-Péclet-number limit. Additionally, this example
suggests the general behavior for the transit-time mo-
ments which, in fact, accounts for-our numerical data on
percolation networks. We shall begin with our heuristic
argument for the form of the moments, and then verify
that these moments are qualitatively correct by using the
detailed microscopic rules of Sec. III.

Consider the Y-shaped network shown in Fig. 4, where
the incoming fluid flux ¢ branches into two tubes of
respective fluxes eq and (1—e€)g. It is pedagogically use-
ful to think of the ‘“‘weaker” branch as approaching a
dead end as the limit e—0 is taken. In this system, the
tracer flux through each branch may be viewed as the
sum of diffusive and convective processes which occur in-
dependently and simultaneously. The total transition
rate into the upper tube is then the sum of its diffusive
rate, equal to the inverse diffusion time D, //?, and its
convective rate, equal to the inverse convection time
u /l =€eq /v, where u is the upper branch velocity and v is
the tube volume. A similar expression applies to the
lower branch, and each transition rate is the relative
probability of tracer traversing the respective tube. As
€—0, these rates tend to D, /I? and g /v for the upper
and lower branches, respectively, and the relative en-
trance probabilities tend to p, =D, v/I*q+0(g ~%) and
pr=1—p,. (These results for the respective probabilities
can be obtained rigorously using the probability-
propagation ideas of Ref. 11.) Thus the moments of the

transit-time distribution are, to leading order in ¢ !,

k
Dmu 12 v
(t*)=p,thi+ptf~ S
Puly TPIY lzq ¢ D, q
k
i L (53)
7 q
eq
q
(1-8)q

FIG. 4. Simple network illustrating the approach to the
diffusive limit.
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We can rewrite this result in the more general (and sug-
gestive) form

(tky ~7orh ™1, (54)

where 7. = (t ) =3v /q is the “convection time,” which in
turn is equal to the total volume of the system divided by
the flux, and 7, =1%/D,, is the “diffusive time” in the
dead end. Thus the contribution of the slowest bond
dominates in all but the first moment, in which case this
contribution is of the same order as that of the rest of the
network.

We now verify the heuristic reasoning just given, by us-
ing the formalism of Sec. III (similar results were first ob-
tained by Aris’® using a different method based on mo-
ments of the CDE). Let us proceed directly to the Y net-
work in the dead-end limit, which is redrawn for clarity
in Fig. 5. The two series bonds have length /, and a
dead-end bond is attached to the central node. Suppose
that all the bonds have cross-sectional area S, and that
the flow velocity on the two “backbone” bonds is u. For
generality, suppose the dead-end bond has a different
length £, volume V, and diffusivity D than the backbone
bonds. We are interested in the transit-time moments of
this system in the high-velocity limit. For this purpose,
we require the limiting forms of the matrix coefficients
G ' and G . Using Egs. (41) and (42), we see that for the
backbone bonds

G*t(m,s)—q , (55)
G (m,s)—0, (56)
for m =ul /2D,, — + « (outgoing links), and
G*t(m,s)—0, (57)
G ~(m,s)—qe /7, (58)

for m — — o (incoming lines), where ¢ =uS is the flux in
the link and v =IS is the volume of the link. For the
dead-end bonds, the limiting forms are

2.2
G*(m,s)=§‘t2mscothms~g+%s—+ V;éﬁDs as s—0,
(59)
_ SD m; Vs TV.L%?
G lmys)="7 sinhm, 876 T 3600 570
(60)

FIG. 5. Geometry of a simple dead-end configuration; bond
velocities, lengths and diffusivities are shown.



37 TRANSPORT AND DISPERSION IN RANDOM NETWORKS WITH . ..

where g=SD /L and V=S.L.
From the following network equations for each node of
the system: inlet node,

qc;=1; (61a)
outlet node,

ge ~*/%;=Pl(s) ; (61b)
dead-end node k,

G " (0,5)c, —G ~(0,s)¢; =0 ; (61c)
central node j,

ge %, +q¢;+G *(0,5)¢; —G ~(0,5)e, =0 ; (61d)
we may straightforwardly solve for P(s) and obtain

Pis)= ge ™" (62)

g +SVsD tanhV’sL2/D

At this stage, the moments of P (z) could be extracted by
differentiating (62) directly, but it is slightly more con-
venient to calculate the cumulants by differentiating
InP(s). Using the fact that, as ¢ — oo,

InP(s)~ — —;—(2vs +S8VsD tanhV'sL%/D ), (63)

we obtain
2u+V 2
t) =———m = — ,
(1) T
where U =2lu /(2] +.L) is the average velocity in the sys-
tem. Similarly, for the second cumulant we find

(64)

Ll
=) (1) ==— .
o?=(?)—(1) o, (65)
More generally, for k > 1, the kth cumulant scales as
SL* ! -
Ck“'W:f»TC"JL() h. (66)

Here f, =V /(2v +v) is the volume fraction of dead end,
7c=(t) is the convective transit time across the system,
and 7, =L?/D is the diffusive transit time on the dead
end. Note also that, to leading order in 1/q, C;, ~(t*),
and that C, /C, _,~.L?/D, independent of k. The above
result for the cumulants agrees with our heuristic argu-
ments above, and we shall see that it also appears to ac-
count for our numerical data on percolating networks.
The strikingly simple result given in Eq. (64), that (¢ )
equals the pore space volume divided by the flux in the
high—-Péclet-number limit, is actually quite general. It is
proved for an arbitrary network configuration at high
Péclet number in Appendix C. A statement equivalent to
(64) is that the average transit time equals the system
length divided by the average fluid velocity in the pore
space or, loosely, that the average tracer velocity equals
the average fluid velocity. Since the local velocity of the
tracer consists of a fluctuating Brownian term plus a drift
given by the local flow field, the latter statement is intui-
tively reasonable. From the macroscopic point of view,
the fact that the mean time equals the pore volume over
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the flux is equivalent to Eq. (23), and is a consequence of
the CDE when the latter applies and when the Péclet
number is large, a fact long known in the chemical en-
gineering literature.*!

The physical implications of this result for the first mo-
ment are far reaching as all pore space makes an equal
contribution to the average transit time, independent of
the local velocity. This stems from a cancellation of the
competing effects of the probability of entering a given
region of the system (which is proportional to the local
Péclet number), and the expected transit time through
this region (which is proportional to the inverse of the
Péclet number), in obtaining the average of the transit
time.

If we describe the system by a macroscopic CDE, we
can now use Egs. (66) and (29) to write the dispersion
coefficient as

v o, UL
a0’ b

where the average velocity is U=2lu /(2] +.L). This ex-
pression is quite similar to de Gennes’s prediction (7), but
multiplied (very plausibly) by the relative volume of dead
end present.

We can bring this simple model into even closer analo-
gy to a percolation network by attaching an arbitrary
number of dead ends to the central node j, with each
dead end having a length L ,, volume ¥V, and a (possibly
distinct) microscopic diffusion coefficient D,. Each
dead-end node concentration can be eliminated by the
analog of Eqgs. (61), and thus makes an independent addi-
tive contribution to (63). Thus, at large g,

D = , (67)

InP(s)~ -i 2us+S 3 V/sD_tanhV/sL2/D, | ,
a

(68)
from which we find that
2w+ 3JV,
I (69)
q
and that the cumulants scale as
1 .sz -1
Ck~;§ Dk for k>1. (70)

The latter expression suggests that the largest dead end in
the system dominates the behavior of the cumulants. To
see this concretely, suppose that the probability distribu-
tion of dead-end lengths is

p(L)~L %47 (71)

where £>>/ is the correlation length, and that the
diffusion coefficient on a dead end of length .L varies as
D(L)~.L~° where 6 is the ant exponent. Replacing 3,
by f d.L, we obtain

1
Ck~_l_‘_§2k—x—(k—l)9 . (72)

For £ >>1 we have
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2lu ul
Ue 2 ’ (73)
Z’La glfx
and therefore
C, ~—1—§‘2+9“"—“~7C7—’b”1 ) (74)

U

We again obtain the same scaling law for the moments as
in Eq. (54), where now the diffusion time is controlled by
the anomalous diffusion exponent

g0 (75)

Note again that it is the average velocity over the entire
pore space, rather than the backbone velocity, which
enters the moments and longitudinal dispersivity.

V. NUMERICAL RESULTS FOR PERCOLATING
CLUSTERS

For percolating networks, we have used the formalism
developed in Sec. III to calculate the Laplace transforms
of the tracer concentrations at each site of the network.
From these quantities, we can calculate either the
transit-time probability density P(¢) by numerical inver-
sion, or the transit-time moments as outlined in Egs.
(47)-(51). We again emphasize that the moments ob-
tained in this manner are exact for a given configuration,
up to the round-off error inherent in the numerical solu-
tion of the network equations. The same methods can
also be used for nonpercolative networks, and to illus-
trate this point we will also discuss the behavior of the
moments on fully occupied lattices.

We consider networks of identical links on a square lat-
tice at the percolation threshold, with the linear dimen-
sion L of the lattice ranging from 2 to 70. We choose a
self-dual lattice (Fig. 3) so that the percolation threshold
occurs exactly at bond occupation probability equal to
1. 32 For each configuration, we first find the background
flow field by assuming that each occupied link has flow
conductance unity and solving an analog random resistor
problem with unit pressure drop. We then scale the re-
sulting fluid flux in each bond by a common factor so that
the total flux passing through the network has a (dimen-
sionless) value Q The dimensionless average velocity in
the network is the flux divided by the average number of
bonds across the sample, U =0 /L'~#/". The rescaled
flux in each bond can be taken to coincide with the mi-
croscopic Péclet number, since the latter is related to the
flux by constant factors which are the same for each
bond. Furthermore, the unscaled total flux is the electri-
cal conductivity normalized to the pore fluid conductivity
o /0 and the porosity is just the actual number of bonds
present divided by the maximum number allowed. The
relation between this dimensionless description and phys-
ical units is discussed in detail in Appendix D.

We have typlcally obtained data for nine dlfferent
values of 0 =0,10"2,10"!,...,10% This range of O
values spans both the purely dlﬁ'uswe regime and the ex-
treme convective limit where the average transit time
varies strictly linearly with 1/0. Each data point was

J. KOPLIK, S. REDNER, AND D. WILKINSON 37

based on averaging results over 2000-6000 realizations of
the network for L <60 (and rather fewer for L =70 due
to computer limitations). The typical standard deviation
in the mean ranges from a few percent for the first mo-
ment to about 25% for the highest. In addition, for L=2
and 3, it is feasible to enumerate and solve all pLi+L—1?
configurations of the network and thereby obtain the ex-
act configurational-averaged transit-time moments. The
data obtained in this manner do agree quite accurately
with those obtained by a random sampling of the
configurations, and this serves as a useful check of our
Monte Carlo data.

A. The transit-time probability density

To gain some qualitative insight into the time depen-
dence of the transit-time distribution P(t), we have plot-
ted it for various systems of linear dimension L =10.
These results were obtained by evaluating P (s) at discrete
values of s, and using the Stehfest algorithm®® to numeri-
cally invert the Laplace transform. In Fig. 6, we com-
pare a one-dimensional chain of length 10, a fully-
occupied 10X 10 lattice, and the average over 100 realiza-
tions of a 1010 lattice at the percolation threshold, all
with Q =1. Because of our asymmetric boundary condi-
tions and the finite size of the system, these curves are all
skewed with prominent long-time tails. The dot on each
curve identifies the location of (¢ ). We see that in going
from the linear chain (no dead ends), to the fully occupied
lattice (small stagnation zones), to the percolating net-
work (large dead ends), the tail becomes more prominent
and the separation between the mean and most probable
transit time increases. In Fig 7, we illustrate the velocity
variation of P (¢) by comparing the results for percolation
lattices at flow rates Q 0, 0.1, and 1.0. In the purely
diffusive limit, P (¢) is quite broad, but it sharpens as the
flow rate increases and tracer is convected through the
system. Further increase of O continues to sharpen the
peak and move it to lower values of ¢, but the curve al-

0.003

0.002+

P(1)

4

.10 x 10 full
0.0104 :

.~.<‘~ ..

10 x 10 Percolative

50 100 150 200 250 300
t

o

FIG 6. Transit-time probability density for a chain of length
10 (solid line), a 10X 10 full lattice (dashed line), and a 10X 10
lattice at the percolation threshold (dotted line), all at Q =1.0.
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colation lattice at Q 0 (solid line), Q 0.1 (dashed line), and
0 =1.0 (dotted line).

ways remains skewed and always has a long-time diffusive
tail.

One conclusion to be drawn from these figures is that
the various distributions are similar at a qualitative level,
independent of the microscopic structure of the system.
There are of course crucial quantitative differences in the
curves shown, particularly in the strength of the tail, but
they are not readily evident in this presentation. We turn
to the transit-time moments, whose qualitative behavior
is far more instructive.

B. The fully occupied lattice

As a preliminary to percolation disorder, it is useful to
consider the transit-time moments on lattices where all
bonds are present. First, in the limit of zero average ve-
locity, there is simple molecular diffusion on a regular lat-
tice of cylindrical tubes. We would therefore expect the
diffusion equation to apply and that the effective and
molecular diffusivities would coincide. Furthermore,
since the macroscopic Péclet number is zero, we expect
the simple size-scaling behavior {(z*¥) ~L?*, from Egs.

2), (24), and (26). In Fig. 8, we plot the first three mo-
ments, which indeed behave as indicated, and further the
numerical values are in accord with the macroscopic
CDE. An additional test of the macroscopic behavior is
provided by Eq. (2); in Fig. 9, we compare the diffusivity
as given by (28) with the ratio of electrical conductivity to
porosity. As the lattice size increases, the two quantities
converge to a common value of 1, as anticipated.

We next consider the behavior at high velocities, and
we plot the first three moments as a function of Q for
L =70 in Fig. 10, and as a function of size at 0 =10° in
Fig. 11. (The velocity variation of the transit-time mo-
ments for this lattice was first discussed by Roux et al.?’)
In the first figure, we see two different regimes of behav-
ior for the moments, which can be interpreted in the fol-
lowing manner. The system considered here consists of
horizontal “‘convective” bonds with high-velocity fluid

and volume ¥V, say, plus zero-velocity ‘“‘dead-end” verti-

cal bonds of total volume V. In the spirit of the heuris-

tic argument presented in Sec. 1V, we would write the

moments as

«
D, Vp Vc N Ve

o | o D Qo

where for clarity we employ the quantity Q, which is the
flux in physical units (cf. Appendix D). Here the two
terms refer to tracer which enters a dead end and must
diffuse out, and tracer which simply convects through the
network, respectively. Now when the flux is not too
large, i.e., Vo /Q >>1%/D,,, one has (t*) ~Q ~* from the
second term, whereas in the opposite case of very high
flux, the first term dominates to yield (1¥) ~Q ~!. These
two limits correspond to the two regimes in Fig. 10.
Turning next to the size variation of the moments at
very high velocity, Fig. 11, we first note that both the
heuristic argument just given as well as the average time
theorem of Appendix C imply that (z) should vary as

(tky ~ , (76)

0.56

0.55f

0.54

0.53

0.52

0.51 a/ao¢

0-50 e 4 1 " 1 A A I A
0 10 20 30 40 50 60 70 80 90 100
L

FIG. 9. Comparison of D, (closed squares) with o /0yd
(closed circles) for full lattices at Q =0.
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FIG. 10. Variation of (¢*) with O for a 70 X 70 full lattice.

L 2/@ once Q >>1. For the other moments, the above ar-
gument predicts (%) ~TCTII()'1~L2/Q, because the
characteristic diffusion time is simply that of a single
bond (7, ~1%?/D,,). The numerical data are in agree-
ment with these estimates.

Lastly, we consider the relevance of the macroscopic
CDE for describing the fully occupied lattice; in Sec. III,
we argued that a necessary condition for its relevance is
Eq. (11), that the tracer spends enough time in the system
to sample the pore space fully. We may rewrite this con-
dition in terms of the flux as V/Q >>12/Dm, which is
satisfied only in the intermediate-Q regime. In this case,
the arguments of Sec. II suggest that D, ~U?%?*/D,,
and SO the macroscopic Péclet number
M=UL/2D ~D,L /I*U>>1. The relevant limiting
form of the solution to the CDE is that given in Eq. (27),
which has (7%¥) ~Q ¥, in agreement with the numerical
data.

10°!
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FIG. 11. Variation of {z*) with L for full lattices at { = 10°.
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FIG. 12. Variation of reduced moments ({z%)!/%
k=1,2,...,10, for percolation lattices at Q =0.

C. Percolation moments at § =0

In the absence of convection, the tracer motion reduces
to a continuum version of anomalous diffusion on per-
colation clusters. As discussed in Sec. II, one expects
that the diffusion equation does not apply, but that the
transport is controlled by the ‘“‘ant in the labyrinth”
diffusivity. If this is the case, then the scaling law
k

L’ k240 77)

k
O~ DD

is expected, because L2/D,,, is the only time scale in the
problem. If the macroscopic diffusion equation were to
apply, then one could additionally obtain specific values
for the proportionality constants in this equation. In Fig.
12, we plot the reduced moments (t*k)1% versus L for
k=1,2,...,10. The different curves are indeed parallel,
with a common slope 2.9-3.0, as compared to the expect-
ed value 2+60=2.86 in two dimensions. On the other
hand, the numerical coefficients do not agree with Egs.
(22) and (24), indicating that a CDE does not apply to
these percolation systems. A further verification of the
last statement can be made by testing Eq. (2), which is
implied by a continuum description. If we use Eq. (28)
for the diffusion coefficient, the (numerically computed)
actual average number of bonds in the system for the
porosity, and the unscaled flux for the conductivity (see
Appendix D), we obtain the results given in Fig. 13. The
disagreement between the two curves consists approxi-
mately of a constant factor independent of L, because the
previous results for the moments imply L2/(af)‘/ 2
~D,,,, and the L dependence of the latter is usually de-
rived from that of ¢o.

. A
D. Percolation moments as Q — «

The behavior in the high-Péclet-number regime is
rather more interesting. First, the reduced moment
(t*)17% now depends on k, suggesting that there is no sin-
gle unique time scale which characterizes the transit-time
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FIG. 13. Comparison of D (closed squares) with o /0yd
(closed circles) for percolation lattices at Q =0.

distribution in the high-Péclet-number limit. However,
on the basis of the intuition developed in Sec. IV, we ex-
pect that (z*) will scale as 775!, where 7 and 7, are
typical time scales for tracer to convect or diffuse across
the network, respectively. For percolating clusters, these
two time scales can be inferred on physical grounds.
From the theorem that the average transit time at high
flow rates is proportional to the volume of the system, we
have 7o ~L 2-B/v /@, where the L-dependent factor is the
average number of bonds in a percolating cluster of an
L X L system. Furthermore, from our numerical results
at zero flow rate, there appears to be a unique diffusive
time scale 7p ~L2+% which governs all the transit-time
moments in the diffusive limit.
Combining these two results, we anticipate that

<tk>~LAL2_3/v+<k~1)<2+9) _ (78)

This form appears to provide a reasonable account of the
data, as shown in Fig. 14. We show ((t/L%*) for
k=1,...,8 for sizes 10 through 70. The data are fit
quite well by a power law for the low moments, but the
uncertainties become quite large for k =7 or 8, where the
standard deviation in the mean is about 1 of the mean it-
self. The slopes resulting from an approximate straight-
line fit are given in Table I, and compared to the expected
exponent —fB/v+(k —1)8. The agreement is quite good,
and well within the fluctuations in the numerical data.

As discussed previously, we do not expect the CDE to
apply directly to this percolating system, but in accord
with our remarks at the end of Sec. II, we can still use the
variance o? to obtain the macroscopic dispersivity on
scales much greater than the correlation length. Thus us-
ing 02~ (t?) from our numerical results of this section,
D,~U%?/L from (29), and 0 ~Q/L'~#" from the
definition of average velocity, we thereby find

UL’

Dy~
D, (L)

(79)

which is in agreement with de Gennes.!”
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Vannimenus* has proposed a modified form for D,
which is intended to take account of the embedding of

fractal structures in Euclidean space. The effect of this
d,/d—1)
modification is to multiply Eq. (7) by a factor Lz( r’ ,

which involves the fractal dimension d,=2—/v and the
spectral dimension d (respectively, 1.89 and about 1.7 in
two dimensions). Unfortunately, our numerical data are
not sufficiently precise to check for this weak size depen-
dence (~L%?%). One might also inquire whether the aver-
age velocity used in de Gennes’s formula should instead
be the backbone velocity. If this were the case, 8 should
be replaced by the corresponding backbone exponent,
Bpp=0.33 in two dimensions. Again, this leads to a
small alteration which varies as L%'* in the predicted
moments, and it is difficult to test this variation with our
data.

One might also wonder why there is apparently no ves-
tige of the independent scaling exponents, which has been
observed for the moments of the voltage distribution on
percolation clusters®® and for the transit-time moments in
a hierarchical model of the percolation backbone.!> One
important distinction is that these two situations are con-
vective in nature, and higher moments are sensitive to an
infinite set of distinct convective transport times. For
dispersion on percolating networks, however, the higher
moments are dominated by the diffusion time on the

TABLE I. Comparison of measured and predicted scaling ex-
ponents for a percolation lattice at very high Q.

k Measured exponent Predicted exponent
1 —0.10 —0.11
2 0.76 0.75
3 1.6 1.61
4 2.6 247
S 34 3.33
6 42 4.19
7 5.0 5.05
8 5.8 5.91
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longest dead ends, and the fine convective structure is
unobservable.

E. Scaling of the percolation moments for arbitrary flow rates

To describe the transit-time data at general values of
the velocity, we postulate a scaling form for the transit-
time distribution. This form should interpolate between
the two limiting behaviors given in Eqgs. (77) and (78), in a
manner that leads to a collapsing of the data for the mo-
ments at all values of Q. One of the simplest ways that
these limiting behaviors can be obtained within a scaling
approach is if the transit-time distribution P(t) has the
form

P(t):LF

Ip

t
L, (80)

tp tp
with the scaling function F having the limiting behaviors

F,(x) asy—w

F(x,y)— (81)

yF,(x) as y—0.

The zero-velocity limit corresponds to y =7, /Tp — o, in
which case (tk>~‘r’l‘), while the convective limit corre-
sponds to y —0, which leads to (t*) ~7-78~1. We hy-
pothesize that the general form for P(t) is given by Eq.
(80). It then follows that the moments can be written in a
scaled form

(5

th

lc

Ip

Ic
z,—

[ dzz*F =G, (82)
0 tp

In Figs. 15(a)-15(c) we have plotted our numerical data
for the first three moments for values of Q=102
10-',...,10° and sizes L =10,20, ..., 70 in the dimen-
sionless form suggested in Eq. (82). Within our numeri-

cal precision, we find that the results for each moment .

indeed lie on unique scaling curves, and support the as-
sertion that P(z) has the simple scaling dependence given
in Eq. (80).

VI. CONCLUSIONS

We have investigated the general problem of the trans-
port of dynamically neutral tracer which is carried by
fluid flow through a porous medium. Our primary focus
has been on transport in random-network models of
porous media, with emphasis on the behavior expected
near the percolation threshold. In this kind of network,
the background steady-state flow determines the ensuing
motion of the tracer to be a locally biased continuum
random-walk with the bias determined by the local flow
velocity. This formulation allows us to account for the
competition between convection (on the flowing fraction
of the network) and diffusion (on dead ends and stagnant
regions) in a meaningful fashion. This general approach
represents what we believe to be a physically relevant
generalization of the classical random walk on a percola-
tion cluster to the case of finite flow rates and also to the
continuum limit.

In the random networks that we studied, flow takes
place on discrete links which are considered to be ideal-
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ized one-dimensional tubes with no transverse degrees of
freedom for the tracer. Furthermore, the tracer is as-
sumed to mix completely at the tube junctions. These as-
sumptions are only approximately correct in a typical
porous medium, however. Under certain conditions, the
first assumption may be eliminated altogether by replac-
ing the molecular diffusion coefficient by the Taylor
diffusion coefficient in a tube, as discussed in Sec. III. It
is not evident how to improve upon the second assump-
tion, and further work at the microscopic level is needed
to resolve this issue. However, the degree of plausibility
of these two assumptions is also coupled with the use of a
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FIG. 15. Universal scaling of the moments for percolation
lattices; (a) k=1, (b) k =2, (¢c) k =3.
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percolation model to describe the medium. Our principal
concern has been with cooperative effects on a scale of
many pores, and one may therefore hope that the overall
scaling behavior is insensitive to the local details of a
specific model.

Within the percolation model, we have developed a
computational approach which yields a formally exact
solution for the transit-time distribution of the tracer, for
arbitrary values of the fluid flow velocity. Several illus-
trative examples were solved in detail, from which we de-
duced the general behavior of the transit-time moments
for percolation clusters. Furthermore, we have postulat-
ed a general scaling form for the transit-time distribution
which leads to a unified account of the moments. Our
numerical data on percolation clusters accord well with
the intuition developed from the analytical study of small
networks. As a particular case of the behavior of the mo-
ments, we have verified de Gennes’s prediction for the
variation of the macroscopic dispersivity with the corre-
lation length.

Our ability to make progress on the problems con-
sidered here stems, to an important degree, from the fact
that our model random medium is very well character-
ized. For percolation clusters, the statistical geometry of
the medium is understood and the scaling exponents
which determine its properties on long-length scales are
known. However, the most striking physical examples of
anomalous dispersion occur in geological situations, such
as aquifers and petroleum reservoirs,”® where the random
medium is poorly characterized and its statistical proper-
ties are only partially understood. Even anomalous re-
sults in laboratory studies’’ are plagued by an incomplete
knowledge of the geometry of the material. Percolation
ideas do not seem immediately relevant to these situa-
tions, but we hope that some of our ideas, particularly the
importance of studying the scaling behavior of the
transit-time moments, will help in the general under-
standing of dispersion phenomena.
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APPENDIX A: STATIC DIFFUSIVITY
AND THE ELECTRICAL CONDUCTIVITY

We present two arguments for the relation (2) at Péclet
number equal to zero, one quick and heuristic and the
other more painstaking and rigorous.

Consider the Einstein relation for the electrical con-
ductivity o, of a fluid in terms of the density n of its
charge carriers and their molecular diffusivity D,,,,

_e
kT
If we consider the analogous equation at the macroscopic

oo D,, . (83)
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level in the porous medium, then we have

2
U=‘e”“(n¢)Defr , (84)

kT
since the density of charge carriers is n¢. Taking the
quotient, we obtain the desired result

D
Dt _ O (85)

Dm ¢00
Though oversimplified, this argument has the advantage
that it clearly shows why the factor ¢ must center.

A more careful argument proceeds as follows. Imagine
placing a small sphere of radius r and fixed tracer concen-
tration &, within the pore space, and wait for a steady
state to be established. Microscopically, the local tracer
concentration c(x) satisfies the steady-state diffusion
equation and boundary conditions

Vie=0, c(|x|=r1=§), 0-Vc|gp,=0. (86)

The last condition is the assumption that tracer is not ab-
sorbed into the grains. The flux of tracer leaving an en-
veloping large sphere of radius R is

J(R)=-D,, [ LR (87)
-

Now consider the same problem from a macroscopic
point of view, where there is a coarse-grained diffusivity
D+ and a concentration field C(x), such that in steady
state

VIC=0, C(|x|=r)=&. (88)

At this level, the grains of the medium cannot be
resolved, and there is no analog of the second boundary
condition in Eq. (86). The macroscopic solution is just

or

C(x)=
I x|

) (89)

and the tracer flux leaving the outer sphere of radius R is
J(R)=4m¢D &1 . (90)

The factor of ¢ appears because C is defined only within
the pore space, so the surface area of the sphere is
effectively 47R %¢.

Now consider an analogous electrical problem, where a
conducting sphere of radius » and potential £, is in the
pore space, so the governing equations for the potential
are

V=0, v(|x|=r)=&, 0-Vv | grain=0, 91
and the current leaving the large sphere is

J(R)=—a, [ LSV (92)

\X!:

Again, macroscopically, we have a potential field V(x)
and a conductivity o such that

VV=0, V(|x|=r)=§,, (93)
so that
.
Vix)= -0 , (94)
[ x|
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and the electrical flux leaving the large sphere is

J (R)=4mo&yr . (95)

€

(The macroscopic potential is defined over the entire
porous medium so there is no factor of ¢ this time.) Now
because the microscopic fields ¢ and v satisfy the same
differential equations and boundary conditions they are
equal, and both surface integrals appearing above are
identical. Eliminating the integral we obtain (2).

APPENDIX B: MATRIX INVERSION
AND PROBABILITY PROPAGATION

The Laplace-transformed first-passage probability den-
sity P(s) is given by

B(s)= EGOJ » (96)

where the subscript O refers to the outlet node. The ¢,
satisfy
> (Gjfe,—G

J

for the interior nodes i, and
J

at the inlet node 1. If we define a new quantity d; at each
node by

¢

d = , (99)
265
J
then Egs. (96)-(98) become
s)= 3 pjod; , (100)
J
where
J,:Epj,gj (101)
j
for the interior nodes i, and
d (102)

d1:1+ zpj,gj )
j

where the rescaled bond ““conductances” p i are given by

Gy lmy5) (103)
Pi= > Gji(m,s)
k
Gy (=ms) (104)
3 Giimys)
k

Substituting for G and G ~ their values given in (41)
and (42), we find that the p;; are precisely the quantities
pj; considered in Ref. 11. Furthermore, by working re-
cursively through Egs. (100)-(102), it is clear that the
solution to (100) will be

P)=3 TII p >

I links ji

(105)
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where the sum is over all distinct paths I" from the inlet
to the outlet which pass only once through the outlet (but
may return to the inlet). In the high—Péclet-number lim-
it, however, backflow paths do not contribute and the
sum reduces to being only over distinct ‘“‘downstream”
paths. Formula (105) is the basis of the ‘“probability
propagation” algorithm developed in Ref. 11.

APPENDIX C: AVERAGE TIME
AT HIGH PECLET NUMBER

At sufficiently large flow rate, the local Péclet number
m in all the flowing links becomes large, and we can use
the limiting forms of G * and G ~ given earlier in Sec. II1
to reduce the expression for the average transit time to a
strikingly simple form. Let us expand the matrix equa-
tion for the ¢; in powers of s. To lowest order in s we
have at node /

z quE :0)

Jout jin

- E‘Iji?}m“‘ > gij(E;m'“fi'O)):Su )
i j dead

(106)
where the three sums denote the outgoing links, incoming
links, and dead-end links, respectively. The inlet node
has no incoming links, and for the internal nodes, we

have, by flux conservation,

2 9= 24 - (107)
jout jin

Thus the above reduce to
Saic”-e+ 3 gy —e?)=0 (108)
jin j dead

for the internal nodes i, and
Saed+ 3 gyed—e =1 (109)
jout j dead

at the inlet node I. By inspection, the solution to this is
that the ¢ {¥ are all equal,

6‘}0):-&— , (110)
where
0= 3 qj (111)
jout

is the total flux entering the network. To first order in s
we have

2 qijai'”-ijie,;”'*' 2 gij(?i'”'_a'(j”)

jout jin j dead
E(O) a—(_o)
o4 J
+23V ij€ j + 2 Vi |5+ 6 =0
jin jdead
(112)
for the internal nodes i, and
> q5C "3 g, 5;“)
jout j dead
E(Im E;O’
+ 3 V| |0
j dead
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at the inlet node I. The outlet node equation reads

g 0

e 114
3T (t), (114)

- 2q10~<1) + 2 Vo;

jin jin

where (¢ ) is the desired average time to cross the net-
work (recall that there are no dead-end nodes attached to
the outlet). If we sum these equations over all the nodes
(including the inlet and outlet), then the terms involving
the ¢ {!' all cancel, and we obtain [using the zeroth-order
solution (110)]

Vij 14
(t)=3 2 (115)
flowing Q dead 2Q Q
where V is the total volume of the network.
APPENDIX D: PHYSICAL UNITS
AND THE COMPUTER SIMULATION
In our numerical calculations on the n, Xn, lattice

shown in Fig. 3, we first assign unit flow conductance to
each bond ij, a unit pressure drop across the system, and
compute the node pressures p;, from which we determine
bond fluxes §;; =p; —p; and a total flux QO entering and
leaving the network.

First we note that QO is trivially related to the effective
conductivity of the network. We imagine that the bonds
are identical cylinders of radius r and length /, and that
the solid surrounding the fluid is a block of dimensions
nIxn,IxI. (Note that we here consider a set of three-
dimensional cylinders connected in a two-dimensional
square lattice; we could also discuss a two-dimensional
“‘etched” pattern, but this would merely change some of
the numerical constants in this appendix.) The electrical
conductance of each cylinder is then cro'rrr2 /1, and the to-
tal current flowing is just this factor times QO. The
effective conductivity is the current density per unit po-
tential gradient, which is the total current per unit cross-
sectional area n,/ X1, divided by the (unit) voltage drop

over the system length n,/, which yields
oo’ i g (116)
]2 ny QO N

ag =
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Similarly, the porosity ¢ is the volume per cylinder times
the number of bonds Ny divided by the system volume,
or

2 N
=, (117)
1? nen,
so that the combination appearing in Eq. (2) is
o
— . (118
ood N B )

To consider the dispersion problem in physical terms,
we suppose that the fluid has viscosity p, and the net
pressure drop is AP, so that the physical flow conduc-
tance (for Poiseuille flow) is 77*/8ul, the resulting pres-
sures are AP-p;, and the physical single-bond and total
fluxes are 7r*AP /8ul times g, and QO, respectively. Itis
convenient to write the pressure in the form

16uD,,

P=A—5—, (119)
r

where A is dimensionless, because then the single-bond
Péclet number is

qij L
m; = 22D =Ag;; . (120)

Furthermore, the total flux is

27D, .
Q= —”T““*}\.QO , (121)
and we identify Q-——AQO as the dimensionless control
variable in the numerical simulations. Some physical
feeling for A is obtained by considering a fully occupied
lattice, where QO =n, /n,, and it follows that

(Q/21Tr2ny Win,) yL

= = 2
A D, D (122)

m

Here U is the average fluid velocity and L the system
length so A is twice the Péclet number introduced in Eq.
(1).
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